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The problem considered is that of a self-propagating pair of line vortices, of equal
and opposite strengths, in a compressible inviscid fluid. An asymptotic solution is
sought in the limit of small propagation speed compared with the sound speed in
the medium. In most of the fluid region, the elementary incompressible flow solution
limit is enhanced by a Rayleigh–Janzen approximation. This approximation fails at
points that are either far from, or very close to, a vortex. For distant points, rescaled
outer variables lead to an approximation that corresponds to the field induced by
a moving dipole in compressible fluid. The main approximation also fails near each
vortex line, where the analysis of Barsony-Nagy, Er-El & Yungster (J. Fluid Mech.
vol. 178, 1987, p. 367) is used to express the local flow field in terms of a hypergeometric
function. A particular feature of the problem is the propagation parameter P , which
is proportional to U ′h′/K , where U ′ and 2h′ denote the propagation speed and
separation of the vortices and K is the circulation. The parameter P is a function of
the Mach number M and has the asymptotic value unity in the limit of incompressible
flow. The analysis leads to the conclusion that P = 1 + o(M2) for small values of
M; that is, the propagation number is unchanged to order O(M2). This differs from
earlier work, which predicted the asymptotic development P ∼ 1 − M2/4.

1. Introduction
The study of vortex dynamics has played a central role in the analysis of fluid

mechanics, and there are many examples where its investigation can provide significant
insights into the structure of fluid flow fields.

For example, the sound field induced by a fluid motion has been shown to be
equivalent to that produced by a hypothetical source distributed related to the
divergence of the vector product of vorticity and velocity fields (Powell 1964; Howe
1975). In some circumstances, this gives a convenient alternative to the renowned
formulation of Lighthill (1952) who expresses the sound field in terms of a hypothetical
distribution of quadrupole sources related to the local velocity field.

Representations of fluid motions in terms of the vorticity field are particularly
useful if the vorticity is confined to relatively small regions. A classical idealized
model is that of a vortex filament, with the region of vorticity taken to be a line
of zero thickness. This has the advantage that the corresponding velocity field can
be calculated relatively easily, at least in the case of incompressible inviscid flow,
in the form of a line integral using the Biot-Savart formula (Saffman 1993; Kambe
2004). The motion of line vortices in isentropic flow, with given solid boundaries, can
be analysed using the notion that vortex lines move with the fluid, with care taken
to allow appropriately for the inevitable singularity at the vortex itself, and much
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progress has been made in methods to track the vortex paths (see Saffman 1993 for
example).

This simple model of line vortices in incompressible flow has the considerable ad-
vantage of being amenable to the detailed calculations described above; but the model
fails at points that are too far from, or too close to, the vortices. The incompressible
flow approximation breaks down at sufficiently great distances (from the vortices)
where sound waves generally will be present. The elementary solution also breaks
down at points close to a line vortex. Work due to Taylor (1930) provides the form
of the governing equation for points at distances of order O(M) from a straight line
vortex.

The line vortex model is inadequate as the distance to a vortex becomes vanishingly
small and we must replace the elementary model with one in which there is a core of
small but finite radius, such as a core of stagnant fluid (see Moore & Pullin 1987 for
example) or a hollow core of small diameter (Leppington & Sisson 1997; Pocklington
1894) or else a light cylinder that drifts along with the fluid. A significant complication
associated with the ‘fluid-core’ model is that its shape is an unknown of the problem.
Moore & Pullin (1987) address the problem of a pair of self-propagating vortex cores
containing stagnant constant-pressure fluid (and with equal and opposite strengths);
they present numerical solutions for a range of values of two independent parameters
of the problem. Their work also includes an analysis of the limiting case where the
(maximum) diameter of the vortices is small.

The present work returns to the simplest non-trivial problem including compressi-
bility: a pair of straight line vortices, with equal and opposite (circulation) strengths
±K , propagates in an inviscid fluid in a direction perpendicular to the line joining
the vortices.

The significant physical quantities in this steady compressible-flow problem are the
mean sound speed c0, the circulation constant K , the separation 2h′ and the propaga-
tion speed U ′ of the vortex pair. These form two dimensionless parameters, namely a
‘propagation number’

P = 4πU ′h′/K (1.1)

and a Mach number defined as

M = U0/c0, (1.2)

where U0 is the value of the propagation speed in the limit of incompressible flow.
The two dimensionless numbers must be related: thus P = P (M), where the function
P (M) has to be determined as part of the problem. In the the limit of incompressible
flow, the problem is elementary, with U ′ = K/(4πh′), hence P ∼ 1 as M → 0.

The possible variation of P due to small compressibility effects is noted by Barsony-
Nagy, Er-El & Yungster (1987), and by Moore & Pullin (1987). The latter authors
investigate the problem of the steady self-propagation of a symmetrically shaped pair
of vortices in compressible fluid. They derive numerical results for several vortex
core sizes and Mach numbers and include an analysis for the limiting case of vortex
filaments, with the prediction that P ∼ 1 − M2/4 as M → 0. The comparison with
their numerical results is not conclusive because of numerical difficulties associated
with the singular behaviour of the line vortex model. The different conclusion reached
in the present analysis is that there is no perturbation in the propagation parameter
P to the order of approximation (O(M2)) considered here. That is, it is predicted here
that

P = 1 + o(M2) as M → 0. (1.3)
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Figure 1. The geometry of the problem, shown in a reference frame that is fixed relative to
the vortices.

An asymptotic analysis is given for the limit of small Mach number M , the
procedure being as follows. In most of the fluid region (called the ‘main’ region) the ele-
mentary textbook solution for incompressible flow is the leading-order approximation,
and this is enhanced in the analysis of § 2 by a ‘Rayleigh–Janzen’ correction term
proportional to M2, where M is the Mach number. This approximation fails at
points that are either far from, or very close to, a vortex. For distant points, rescaled
variables are defined in § 3, leading to an outer approximation that can be interpreted
as being the potential due to a steadily moving dipole in compressible fluid. A
physical argument is used to reproduce the dipole approximation obtained by the
formal matching procedure described above.

Barsony-Nagy et al. (1987) point out that the incompressible-flow approximation
also fails near a vortex line and they use Taylor’s equation (Taylor 1930) to express
the local flow field in terms of a hypergeometric function. Their method is described
in § 4 and is used to express the form of the solution near each vortex.

2. Main approximation
Cartesian coordinates (x ′

1, x
′
2) are chosen so that the plane of symmetry is given by

x ′
2 = 0 and the vortices are at (U ′t ′, ±h′) at time t ′. Equivalently, in a reference frame

that moves with the vortices, the vortices are at rest and the distant fluid has velocity
(−U ′, 0, 0) (see figure 1). In view of the symmetry, attention can be confined to the
upper vortex at (U ′t ′, h′). The circulation round this vortex has the prescribed value
K , which is expressed for later convenience as K = 2πκ . The propagation speed U ′

of the vortices in the positive x ′
1-direction is constant throughout the motion.

In the limit of incompressible flow, the upper vortex has height given by h′ ∼ h0

and is driven by the image vortex at y = −h′ ∼ −h0, with circulation −2πκ and with
h0 related to the propagation speed U ′ ∼ U0 by the expression

U0 =
κ

2h0

. (2.1)

A dimensionless Mach number M is defined as

M =
U0

c0

=
κ

2h0c0

, (2.2)

where c0 denotes the sound speed of infinitesimal vibrations. The separation distance
2h′ and propagation speed U ′ can differ from their limiting values 2h0 and U0 when
compressibility effects are taken into account.
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It was remarked in § 1 that the parameters κ , h′ and U ′ form a dimensionless
number

P =
2U ′h′

κ
, (2.3)

which is a function of the Mach number M . Thus, P = P (M) with the limiting value

P ∼ 1 as M → 0, (2.4)

and the possible variation of P from this limiting value is considered later.
The circulation constant κ is taken to be fixed. In addition, one of the parameters

h′ and U ′ can be specified and the other has to be determined as part of the solution.
For a given value of the Mach number M , the product U ′h′ is an invariant, according
to (2.3). We could take either h′ = h0 or U ′ = U0 at the outset, with the other one
to be determined, but it is instructive to allow both h′ and U ′ to differ slightly from
their limiting values h0 and U0.

The general unsteady equation satisfied by the velocity potential φ′, for isentropic
gas, is that given by Blokhintsev (1946), (see also Longhorn 1952; Lighthill 1972),
namely{

c2
0 − (γ − 1)

(
∂φ′

∂t ′ +
1

2

∂φ′

∂x ′
j

∂φ′

∂x ′
j

)}
∂2φ′

∂x ′2
i

=
∂2φ′

∂t ′2 + 2
∂φ′

∂x ′
i

∂2φ′

∂x ′
i∂t ′ +

∂φ′

∂x ′
i

∂φ′

∂x ′
j

∂2φ′

∂x ′
i∂x ′

j

, (2.5)

where the double suffix summation convention is used, with indices i and j running
from 1 to 2. The term inside the curly brackets, on the left-hand side of the equation,
is the variable sound speed; γ is the ratio of specific heats; c2

0 = dp/dρ, evaluated at
the equilibrium values of pressure p and density ρ, is the square of the sound speed
for infinitesimal vibrations.

The same equation holds for either of two possible reference frames, which are fixed
with respect to either the moving vortices or the fluid at infinity; the potential refers
to the velocity field relative to the chosen reference frame. In the steady problem
considered here, it is convenient to work in the frame fixed relative to the vortex pair,
so that the potential is independent of time, and three of the terms in equation (2.5)
disappear.

Given the length scale h0 and circulation 2πκ , a time scale h2
0/κ can be formed and

dimensionless variables Φ, Xi, t, h and U are defined by the formulae

φ′ = κΦ, x ′
i = h0Xi, t ′ =

(
h2

0/κ
)
t, h′ = h0h, U ′ = 2U0U. (2.6)

In terms of these variables, equation (2.5) takes the form

∇2Φ = 4M2

{
∂Φ

∂Xi

∂Φ

∂Xj

∂2Φ

∂Xi∂Xj

+ 1
2
(γ − 1)∇2Φ

(
∂Φ

∂Xj

∂Φ

∂Xj

)}
, (2.7)

where Φ is the potential of the velocity field relative to the fixed vortex pair. Thus, at
a great distance from the vortices, we have φ′ ∼ −U ′x ′

1, hence

Φ ∼ − U ′

2U0

X1 ≡ −UX1 as R ≡
(
X2

1 + X2
2

)1/2 → ∞. (2.8)

with U defined as U ′/2U0. In most of the flow domain (namely at points not too
close to, or too far from, the vortex), the solution is given asymptotically, for small
values of the Mach number M , by an elementary incompressible flow potential. Thus,
we pose the Rayleigh–Janzen expansion

Φ ∼ Φ0 + M2Φ1 + · · · , (2.9)
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where Φ0 satisfies the Laplace equation, with

Φ0 ∼ − 1
2
X1 as R ∼ ∞, (2.10)

and with appropriate singularities near the vortex and its image. This elementary
incompressible-flow problem has the well-known solution

Φ0 = ReF (Z) ≡ 1
2
{F (Z) + F (Z)}, (2.11)

where Z = X1 + iX2 and

F (z) = −i log(Z − i) + i log(Z + i) − 1
2
Z + 1

2
π, (2.12)

and the constant term has been added for later convenience. A correction to the
approximation Φ ∼ Φ0 is obtained from the Rayleigh–Janzen expansion (2.9), and
substitution into (2.7) leads to the following equation for the correction potential Φ1:

∇2Φ1 = 2∇Φ0 · ∇((∇Φ0)
2), (2.13)

with |∇Φ1| = O(1) (to ensure a uniform steady flow) as R ≡ (X2 + Y 2)1/2 → ∞.
Equation (2.13) is simplified by changing from the independent variables X1 and

X2 to Z = X1 + iX2 and Z = X1 − iX2 (see Barsony-Nagy et al. 1987). We find that
(2.13) takes the form

∇2Φ1 = 2F ′(Z)2F
′′
(Z) + 2F

′
(Z)2F ′′(Z). (2.14)

Thus, we have

Φ1 = Ω1(Z, Z) + Ω2(Z, Z), (2.15)

where

2
∂2Ω1

∂Z∂Z
= F ′2F

′′
, 2

∂2Ω2

∂Z∂Z
= F

′2
F ′′. (2.16)

The function Ω2 is the complex conjugate of Ω1.
A particular solution Φp for Φ is calculated first, noting that the general solution

to (2.13) is then obtained by adding a harmonic function. Direct integration of (2.16)
(see Barsony-Nagy et al. 1987) shows that

2Ω1p = F
′
(Z)

∫
F ′(Z)2 dZ. (2.17)

With F (Z) given explicitly by (2.12), the integration is elementary and a particular
solution Φp follows immediately. It is convenient to add a harmonic function

(Z + Z)/16, to obtain a particular solution that vanishes as |Z| → ∞. That is,

4Φp =
Z3 − 2ZZ

2
+ 7Z + Z

3 − 2ZZ2 + 7Z

(Z2 + 1)(Z
2
+ 1)

, (2.18)

and this is the solution obtained by Moore & Pullin (1987). It is emphasized, however,
that (2.18) is not the only solution of (2.13) – it is not even the only solution that
vanishes at infinity – as eigensolutions (harmonic functions) can be added.

Permissible eigensolutions must have even symmetry about the plane X2 = 0 (so
that ∂Φ1/∂X2 = 0 there). Furthermore, for consistency with subsequent matching re-
quirements, they can be no larger than O(Z) at infinity and no worse than O((Z∓i)−1)
as Z → ±i. Thus, the permissible eigensolutions are the functions

ΦA =
Z

Z2 + 1
+

Z

Z
2
+ 1

(2.19)
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and

ΦB = Z + Z. (2.20)

The proposed form for the Rayleigh–Janzen correction term Φ1, of (2.9), is

Φ1 = Φp + AΦA + B ΦB, (2.21)

where the real constants A and B have to be found.
The singular behaviour of ΦA at Z = i (and at the image point Z = −i) corresponds

to dipole behaviour there. The particular solution (2.18) also has such dipole singulari-
ties, so the added term A ΦA changes the scale, but not the nature, of this singularity.
Moore & Pullin (1987) noted that such a dipole singularity can be removed by a
slight change of position of the vortex near Z = i, placing it at the nearby point
(X̂1, X̂2) = (X1, X2 − δM2), with δ chosen suitably, and this corresponds to a shift
in the distance from the vortex to the symmetry plane, leading to the reduced value
h′ ∼ h0(1 − δM2) due to the effect of compressibility. They inferred the value δ = 1/4.

Here, we consider the more general form (2.21) for the correction potential Φ1

and point out that either of the real constants A or B can be chosen arbitrarily,
with the other constant to be determined. The reason for this flexibility is a direct
consequence of the original problem having a free parameter: with circulation fixed,
we may specify either the speed of the vortex or else its distance h′ from the plane.
If we take h′ to have the fixed value h0, then the compressibility correction leaves
the vortex position unchanged and this amounts to choosing the constant A in (2.21)
to remove the singularity at Z = ±i: it transpires that we would require A = −1/4
in that case. Then compressibility effects might change the vortex propagation speed
from its limiting value U0 given by (2.1) in the incompressible limit and any such
perturbation is related to the value of the other constant B in (2.21). Alternatively, we
could insist that the propagation speed has the fixed value U ′ = U0 (that is, U = 1/2),
and subsequent calculations are then required to determine any change in distance of
vortex from the plane, in the manner described above.

In the present analysis, neither A or B will be fixed at the outset, so both h′ and
U ′ will contain a free parameter, though the dimensional propagation number P (see
(2.3)) will not depend on that parameter.

2.1. Behaviour near the upper vortex

Near the upper vortex (at X1 = 0, X2 = 1 in our main coordinate system), we use local
polar coordinates (R1, θ1), with R1 = (X2

1 + (X2 − 1)2)1/2 and θ1 = arctan((X2 − 1)/X1)
and expand expression (2.9) as R1 → 0, to obtain

Φ ∼ θ1 − 1
8
R2

1 sin 2θ1 + M2

{(
A + 1

4

) cos θ1

R1

− 3
4
sin 2θ1

+
(

1
4
A + 2B + 1

16

)
R1 cos θ1 − 1

4
R1 cos 3θ1

}
. (2.22)

The singular term proportional to R−1
1 cos θ1 arises because the vortex position, at

X2 = 1 in the incompressible limit, is modified at order O(M2) owing to compressibility
effects. To eliminate this singular term, we follow Moore & Pullin (1987) by shifting
to a displaced vortex location at X2 = 1−M2δ, say. Thus, displaced polar coordinates
are specified by the formulae R1 cos θ1 = R̂ cos θ̂ , R1 sin θ1 = R̂ sin θ̂ − δ.

The approximation (2.22) can readily be rewritten in terms of the displaced polar
coordinates (R̂, θ̂ ) and the singular term is eliminated by the choice

δ = A + 1
4
. (2.23)
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Thus, we find that the solution near the upper vortex has the form

Φ ∼ θ̂ − 1
8
R̂2 sin 2θ̂ + M2

{
− 3

4
sin 2θ̂ +

(
1
2
A + 2B + 1

8

)
R̂ cos θ̂ − 1

4
R̂ cos 3θ̂

}
. (2.24)

The term proportional to M2R̂ cos θ̂ = M2X1 corresponds to a steady flow at the
location of the upper vortex. Noting that vortex lines move with the fluid (or
equivalently, the net force is zero on a small cylinder centred at the vortex), this term
must vanish and we have

B = − 1
4
A − 1

16
, (2.25)

leading to

Φ ∼ θ̂ − 1
8
R̂2 sin 2θ̂ + M2

{
− 3

4
sin 2θ̂ − 1

4
R̂ cos 3θ̂

}
, (2.26)

near the upper vortex.
The displacement factor δ of (2.23) also implies that the upper vortex has the

vertical location given by

h′/h0 ≡ h = (1 − δM2), (2.27)

to order M2, with δ = A + 1/4 according to (2.23).

2.2. Limit as R → ∞
The main approximation to order O(M2) has the form (2.9) with Φ0 and Φ1 given
by (2.11) and (2.21). At large distances, where R ≡ (X2

1 + X2
2)

1/2 → ∞, and θ =
arctan(X2/X1) is the usual polar coordinate angle, we find

Φ ∼ − 1
2
R cos θ −2

cos θ

R
+M2

{
−

(
1
2
A+ 1

8

)
R cos θ+(2A−1)

cos θ

R
+

1

2

cos 3θ

R

}
, (2.28)

where use has been made of the relationship (2.25) for B in terms of A. Expression
(2.28) gives an estimate for the velocity potential of the fluid motion relative to the
centre of the vortex pair. The potential relative to the fluid at infinity is given to this
order by subtracting the terms proportional to X1 = R cos θ . Thus,

Φ̂ = Φ +
{

1
2

+
(

1
2
A + 1

8

)
M2

}
R cos θ, (2.29)

and the flow at infinity (relative to the vortices) has the magnitude

U ′

2U0

≡ U ∼ 1
2

+
(

1
2
A + 1

8

)
M2, (2.30)

in place of the value U ∼ 1/2 in the incompressible flow limit.
Expressions (2.27) and (2.29) combine to show that the propagation parameter P

(defined by (1.1)) has the development

P = 1 + o(M2) as M → 0, (2.31)

which is, of course, independent of the choice of the constant A. The result (2.31)
differs from the prediction P ∼ 1 − M2/4 of Moore & Pullin (1987) and the origin of
this difference stems from the expression (2.21), which contains two scaling constants
A and B . According to the present analysis, either one of these constants may be
chosen at the outset, with the other to be determined; subsequent analysis leads to
the equation (2.25) that links the two constants. The work of Moore & Pullin (1987)
amounts to setting both A and B to be zero, and it is argued here that this disregards
the requirement (2.25).
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3. Outer approximation
For a wide class of wave problems, including the special case considered here, a

local incompressible flow gives a good representation in the near field, which is the
flow region that is well within a typical acoustic wavelength of the sound field from
the source of the disturbance (but not too close to a vortex). An approximation for
more distant points must take account of the wavelike nature of the fluid, but, at such
distances, the source region has negligible size, and such considerations lead typically
to a wave equation driven by appropriate multipole singularities that represent the
effect of the local compact disturbance. This is formalized by introducing ‘outer’
coordinates (x1, x2), that are scaled with respect to a length h0c0/U0 that characterizes
a wavelength scale, where h0 and U0 are representative lengths and speeds for the
problem.

Using this procedure in the present (steady-flow) problem we take x ′
i = (2h2

0c0/κ)xi =
(h0/M)xi , and the relationship between main and outer variables is

x1 = MX1, x2 = MX2, r = MR, (3.1)

and, when written in terms of the outer variable, expression (2.29) (together with
(2.28)), is

Φ̂ = M

{
−2

cos θ

r

}
+ M3

{
(2A − 1)

cos θ

r
+

1

2

cos 3θ

r

}
, (3.2)

and this has to be matched with an appropriate outer approximation. The scale of the
outer potential, for the fluid motion relative to fluid at infinity, is shown from equation
(3.2) to be proportional to M . Thus, we are led to seek an outer approximation of
the form

φ′

κ
≡ Φ = −

{
1
2

+
(

1
2
A + 1

8

)
M2

}
X1 + Mψ(x1, x2). (3.3)

Substitution into the governing equation (2.7) leads to the outer equation

∇2ψ = M2 ∂2

∂x2
1

ψ + o(M2), (3.4)

with a matching requirement, arising from the expression (3.2), that

ψ ∼
{

−2
cos θ

r

}
+ M2

{
(2A − 1)

cos θ

r
+

1

2

cos 3θ

r

}
(3.5)

as r ≡ (x2
1 +x2

2 )
1/2 → 0. This ensures that the inner limit of the outer solution matches

with outer limit (3.2) of the main approximation (2.9).
In this particular case of steady flow (in a reference frame fixed with the vortices),

the governing equation (3.4) can readily be reduced to Laplace’s equation through
the transformation ξ1 = βx1, ξ2 = x2, where

β = (1 − M2)−1/2. (3.6)

The first term of expression (3.5) indicates a dipole singularity at the origin, with
strength chosen to ensure matching with expresssion (3.5).

A line source of unit strength in a moving fluid (with velocity (−MU, 0) and Mach
number 2MU ∼ M in our scaled outer coordinates) has potential

ψs =
β

2π
ln

{
β2x2

1 + x2
2

}1/2
, (3.7)
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with β given by (3.6) so a dipole of strength 2πD(M) has potential ψd = −2πD∂φs/∂x1,
thus,

ψd = −D(M)β3 x1

β2x2
1 + x2

2

, (3.8)

with D = D0 + D2M
2 + · · ·, say.

Expanding for small values of M (with (x1, x2) fixed) and writing the function in
terms of polar coordinates (with x1 = r cos θ, x2 = r sin θ), ψd takes the form

ψd = −cos θ

r

{
D0 + M2

(
D2 + 3

4
D0

)}
+

cos 3θ

4r
D0M

2 + · · · . (3.9)

Matching this with expression (3.5), we find that D0 = 2 and D2 = −(2A + 1/2), thus

D ∼ 2 − (2A + 1/2)M2. (3.10)

Note in particular, from equations (3.10) and (2.27), that D = 2h, which is the separa-
tion (measured in main coordinates) between the two vortices, and the following
physical argument shows that this is expected. The main solution is that of a self-
propagating vortex pair at (x1, x2) = (MUt, ±Mh) in outer coordinates fixed in the
fluid, with h = (1 − δM2). Now the incompressible flow field due to a vortex pair
of strengths ±K is exactly equivalent to that due to a distribution of line dipoles of
density K = 2πκ perpendicular to the line joining the two vortices. Thus, it is natural
to represent the outer field as such a dipole distribution in compressible fluid. Further,
the line joining the vortices has length 2Mh (measured in outer coordinates) and this
compact distribution can be expressed as a single line dipole at the mid-point between
the vortex pair and of total strength 4πκMh. Noting the two scaling constants in
expression (3.3), this implies that ψ corresponds to a dipole of strength 4πh = 2πD

with D = 2h as above.

4. Core region approximation
It has been pointed out by Barsony-Nagy et al. (1987), and also by Moore & Pullin

(1987), that the main approximation (2.9) also fails at distances R̂ = O(M) from the
vortex. An indication of this comes from the form of the approximation (2.24), in
which the two leading terms for Φ − θ̂ , with R̂ small, are proportional to sin 2θ̂ and
have the same magnitude when R̂ = O(M). This suggests the structure of an ‘inner’
region with

Φ ≡ κ−1φ′ ∼ θ̂ + M2φin(s, θ̂ ) with R̂ = Ms. (4.1)

Substitution in the governing equation (2.7) leads to a partial differential equation
for φin, due to Taylor (1930) (see also Barsony-Nagy et al. 1987 or Moore & Pullin
1987). Thus,{
1 − 2(γ − 1)

s2

}
∂2φin

∂s2
+

{
1 − 2(γ − 3)

s2

}
1

s

∂φin

∂s
+

{
1 − 2(γ + 1)

s2

}
1

s2

∂2φin

∂θ̂2
= 0. (4.2)

Barsony-Nagy et al. (1987) point out that the coefficient of the term ∂2φin/∂s2

vanishes on the circle s = (2(γ − 1))1/2, (that is, at R̂ = 21/2M(γ − 1)1/2), and that
the potential solution has no physical meaning inside this circle; the model of a ‘line
vortex’ is inadequate at such small distances and we require a more refined model.

With the particular θ̂ -dependence shown in the leading terms of equation (2.26),
when R̂ = O(M), we seek a solution of the form φin = χ sin 2θ̂ , leading to an ordinary
differential for χ that is shown by Barsony-Nagy et al. (1987) to be related to the
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hypergeometric equation in terms of the independent variable

τ = 2(γ − 1)s−2. (4.3)

We find that the functions τχ and τ−1χ satisfy hypergeometric equations. Thus, we
can express the general solution for χ in the form

χ(τ ) = A1 τ−1
2F1(a, b; c; 1 − τ ) + B1τ 2F1(a + 2, b + 2; 3; τ ), (4.4)

with parameters a, b, c given by

a =
(3 − 2γ ) + (4γ 2 − 3)1/2

2(γ − 1)
, b =

(3 − 2γ ) − (4γ 2 − 3)1/2

2(γ − 1)
, c =

1

γ − 1
. (4.5)

Note that the first term in (4.4) is analytic at τ = 1 (that is, at s2 = 2(γ − 1)), but not
at τ = 0 (s → ∞) and that the second function is analytic at τ = 0, but not at τ = 1.

The coefficient A1 in (4.4) is determined by matching, as s → ∞ (τ → 0) with the
main solution (2.26), and this requires

χ → − (γ − 1)

4τ
− 3

4
as τ → 0. (4.6)

The second hypergeometric function in expression (4.4) is regular at τ = 0 and the
first function has behaviour given by Abramowitz & Stegun (1965, formula 15.3.11,
p. 559), whence

χ ∼ A1

�(c)

�(a + 2)�(b + 2)

{
1

τ
+

3

γ − 1
+ O(τ ln τ )

}
+ B1{τ + O(τ 2)}. (4.7)

Matching the τ−1 terms in expressions (4.6) and (4.7) requires

A1 = − (γ − 1)�(a + 2)�(b + 2)

4�(c)
. (4.8)

The fact that this value for A1 also ensures the matching of the O(1) terms in
expressions (4.6) and (4.7) is a good consistency check on the approximation scheme.

The constant B1, of (4.4), is not determined at this stage. It was remarked earlier
that the model of a line-vortex with zero diameter breaks down as the distance from
the vortex approaches zero and we require a more refined model, such as that of a
thin core containing stagnant constant-pressure fluid (Moore & Pullin 1987), or that
where there is a light cylinder of small radius that drifts along with the fluid. The
value of the constant B1, in (4.4), depends on the details of the model problem in the
region close to the vortex centre.

Barsony-Nagy et al. (1987) take B1 = 0 to ensure that the solution is bounded at
τ = 1 (that is, at s2 = 2(γ − 1)).

5. Conclusions
A calculation has been made to determine the flow field induced by a pair of self-

propagating line vortices, with equal and opposite circulations, in a compressible fluid.
Matched expansions have been used, with respect to small values of the Mach

number M . The ‘main’ approximation is taken for those points in the flow field
that are neither too far from, nor close to, the vortex lines. In this main region, the
elementary textbook solution for incompressible flow is enhanced by a term of order
O(M2), according to the Rayleigh–Janzen approximation.



Pair of line vortices in a compressible fluid 55

This approximation fails at points that are either far from, or very close to, a vortex.
At distant points, the leading-order solution is expressed in terms of the potential due
to a moving dipole in compressible fluid, with strength chosen to ensure matching;
this approximation has been bolstered by an alternative physical argument that is
used to reach the same conclusion.

The main approximation also fails at points close to either vortex line. The governing
equations in these regions (one near each vortex) have been described by Taylor (1930)
and Barsony-Nagy et al. (1987), and their analysis has been incorporated in the present
problem. The line vortex model ultimately breaks down when the distance from a
vortex becomes sufficiently small, because of the non-physical nature of the vortex
tube of zero thickness. In such a small region, we must amend the model to take
account of a core of finite, rather than zero, diameter.

A parameter of particular interest is the ‘propagation number’ P = 4πU ′h′/K =
P (M), which depends on the Mach number M . The conclusion of this work is that
P = 1 + o(M2). That is, there is no change in P (M) to order O(M2) and this differs
from the prediction P ∼ 1 − M2/4 in earlier work.
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